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LIST OF SYMBOLS

t Time

x(t) Input waveform
s(t) Input signal
n(t) Input noise

Number of independent samples
Observation time

f Frequency

H(f) Filter transfer function

z Decision variable

A= Threshold

Hy(f) Optimum filter

S Signal Power

N Noise Power

é Cumulative Gaussian distribution; Eq.
§-1 Inverse & function

P Probability of Detection

P Probability of False Alarm
B Bandwidth of Signal

Go(f) Signal Power Spectrum

Gy (f) Noise Power Spectrum

Q Measure of performance

F( ) Function of ( )

EL ] Expected value

Var[ ] Variance

g Standard deviation

E Gs(f)/Gy(f)s continuous or discrete
R Estimate of R

R Collection of R,

ii
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OPTIMUM FILTERING REQUIRED FOR BROADBAND
DETECTION OF RANDOM PROCESSES

INTRODUCTION

It has long been believed that optimum filtering for broadband detection
consists of using an Eckart filter. The Eckart filter optimizes the
deflection criteria; however, it does not optimize the criteria of usual
interest, which is maximum probability of detection (PD) for a fixed false
alarm rate.

In this report, we present the derivation of the optimum filter that
maximizes Pp for a fixed false alarm rate. We show by example that the
optimum filter out performs the Eckart filter and other filters.
Additionally, we present a method of estimating performance when the input
spectra are unknown and must be estimated.

PROBLEM DEFINITION

The configuration of interest is depicted in figure 1. The input x(t) is
composed of stationary, zero-mean, Gaussian signal, s(t), and noise, n(t), or
noise n(t) alone. The sampler and summer effectively accumulates M
statistically independent samples during an observation time of T seconds.

x(t) FILTER SQUARE LAW SAMPLER z THRESHOLD
=P H(f) [ DETECTOR =3 AND [eeemedl COMPARISON
SUMMER -

Figure 1. Processing Configuration

If the random variable z exceeds the threshold A when signal is present,
a detection occurs. If z exceeds the threshold when signal is absent, a false
alarm occurs. The problem is to find the optimum filter, Hy(f), that

maximizes P, for a given probability of false alarm, Pe, and a given
observation time, T.
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PROBLEM SOLUTION

We first define the signal-to-noise ratio (S/N) at the input of the
square law detector in figure 1 that is required to detect a signal with given
PD and P, i.e.,

o]
& (Pp) -3~ (Pp)

SINz 5 1

/ W‘—§“1(PD) (1)

M = BT, (2)

where
X
3x) = [ dt(zm ™2 exp(-t?r2) . (3)

— o0

The derivation for the above is given by reference 1. The filter output S/N
and bandwidth (B) are given by

Ldf (o) 2 6g(f)
j:df (6| % ey

[for ol o]
. [:jf ]H(f)‘ Gs(f)] . 5

—Ff Jnee)| * 6g()°

S/N=

and

Equation (1) was derived by approximating the random variable z as Gaussian;
this is a good approximation for M >> 1.

Substituting (2) into (1) and rearranging, we obtain

-1
S/N VBT + p
Pp= 3 ! ﬂ. (6)

1+ S/N
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Since §; as given by (3), is a monotonically increasing function, PD can be
maximized by maximizing its argument

SINABT +37L (p)

T+ S/ ‘ (7)

For the filter output S/N << 1, as is usually the case, and recognizing that

§—1

(PF) and T are constants, Pp can be maximized by maximizing Q, where

Q= (S/N)28 . (8)

Appendix A provides the derivation for the optimum filter IHO(f)]2
that maximizes Q. IHO(f)l2 is given by the following equation:

31, - (91,2 - 81 1,)}/2
1o (F)| 2 = ——— | r(F) - =L ‘1”0 02 (9)

where

WO is the largest region where
2
917 2 81,I,.

Substituting (8) into (6) and utilizing S/N << 1, we have

Py §{:(QT)1/2 +§1L (pFﬂ : (10)
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COMPARISON WITH OTHER FILTERS

Other filters are presently in use for broadband processing. These
include the ideal passband filter, the Eckart filter, and the prewhitening
filter. These filters are popular because of their ease of 1mp1ementat1on or
particular performance measure that they optimize.

We now compare the performance of the optimum filter, Hy(f), with the
performance of the forenamed filters. The best way to make this comparison is
by a numerical example. Consider the following:

Gg(f) = }.01 exp (-f/750) f < 5000
0 f > 5000
Gy(f) =  exp(=f/1000) for f >0 (11)

with integration time
T = 250 sec, and Pe =107 -6, (12)
Equations (8) and (10) are used to determine performance. The results

are presented in table 1; it shows that, for this example, Ho(f) yields the
best P

Do
Table 1. Filter Comparison

Power

Transfer
Filter Function lH(f)l2 Q Pp
Optimum Equation (9) 0.112199 0.71
Eckart /G 0.098704 0.58
Prewhitening l/G 0.096571 0.56
Ideal Passband 1 0.085089 0.44
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If filtering is performed in the time domain, Ho(f) is no more
difficult to implement than the other filters. However, it is more difficult
to design. The same holds true if filtering is performed in the frequency
domain, except that the ideal passband filter is trivial to implement. The
other advantage to the optimum filter is that the whole signal band need not
be processed. The cutoff for the optimum filter in this example is 3455 Hz,
whereas the other filters cut off at 5000 Hz.

UNKNOWN SPECTRA
When Gs(f) and/or Gy(f) are not completely known, then Pp is a
function of the random variable Q. Two characteristics of PD that are of
interest are its expected value and variance.
Writing (10) as

Py = F(Q), (13)

and making use of section 7.7 of reference 2, we obtain the following
. approximations:

E[Ppl= F(E[Q]) + F"(E[Q]) var[Q]/2,
Var[PD],v [F'(E[Q]) ] Var[Q] . (14)

Substituting (3) and (10) into (13), there follows
Fr(ECQD) = (20712 1/2(e001m) 72 expl-[(E[QI) /2 +§1(p,)12)21,
Fr(EQ]) = -(20) 72 T2/a(eCaIm) ™ [((ELQIM2 + &Ly + (eLoIm) /2
vexp[-[(ELQIT) /2 +&-1(p.)72/21. (15)

Appendix B is used to evaluate E[Q] and Var[Q] (see (B-8)).
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Example y

Consider the example from Appendix B with
T = 450 sec, Pp - 1077, §L(pp) = 5.2 . (16)
Since Q(R) = 0.08, using (10), we obtain

Pp(R) = 0.7881 . (17)

Since E[Q] = 0.08 and Var[Q] = 0.000256, substituting into (14) and (15), we
obtain

F*(ELQ])
F*(ELQ])

10.863433,
-393.799455, (18)

and therefore

E[Py] = 0.7377,
Var [P,] = 0.0302. ) (19)

The error in the estimate of the signal spectrum has caused a decrease in
expected performance.

CONCLUSION

The derivation for the broadband filter that maximizes probability of
detection for a given false alarm rate has been provided. Performance
improvement can be achieved using this filter. The detection performance will
be degraded when the signal or noise spectrum must be estimated.
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APPENDIX A
DERIVATION OF OPTIMUM FILTER POWER TRANSFER FUNCTION

For notational convenience, we drop the f-dependence in (4) and (5)
temporarily. Then defining

A = [H\ZGN, R = GS/GN, (A-1)

we have to maximize, by choice of A, the quantity

sV g UAR]4 . A=2
0 e -

Actually, we will consider the slightly more general form

. U;\RJZL Ea‘z‘ , | (A-3)
LJ»] U"ZRJ a

where R1 and R2 are given known non-negative functions of frequency, f.

The integrals in (A-3) are over the band W of interest, and would be written
more accurately, for example, as

o= fARl - jdf AR (F) (A-4)
W

Notice that the function A defined in (A-1) can never be negative.
To determine the optimum A, we let

AF) = AL(F) * en(f) (A-5)

where Ao is the optimum, and n is an arbitrary perturbation. Substituting
(A-5) into (A-3), we obtain
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[RAO + c-:n)Rl__l4
U\(AO + en)]z U(Ao + en)ZRz]

Taking a partial of (A-6) with respect to e, and then setting ¢ = 0, we get

2 3 4 2 4 2
Eio o 4 o [n Ry - e, {280 Y fn * 8,2 on n Rz}]/éo Y0>= 0 for any n. (A-7)

Cancelling irrelevant constants, none of which can be zero, we find that

Q, +8Q =

. (A-6)

Yo Yo
nd2 ;; R1 - E; - R2 Ao =0 for any n. (A-8)

The only way this can be is if the bracketed term is zero for all f ¢ W. Thus
re-substituting the f dependence, the unique optimum A-function satisfies

Ry(F) A(F) = = <R1(f) - ;g-o-> for f e W . (A-9)

Now if Rz(f) were zero in some subregion of W, where Ry(f) is not zero, it

is obvious from (A-3) that Q can be made equal to+e by simply choosing A(f) to
be non-zero only in that subregion, for then y=0. Therefore, we exclude this
case and require that R2(f) >0 for f e W.

Also, since A (f) can never be negative, we must replace any negative
values that arise in (A-9) by zero. Accordingly we define region wo such
that

0
Rl(f) > 280 for f ¢ wo . (A-10)
Then the optimum A function is
ZYO 1 a
A (f) = (A-11)

o2 0 for remaining f ¢ W
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Several useful observations should be made at this point. First, from
(A-3), the absolute scale of A or A0 does not affect Q; so we will
eventually be able to discard the scale factor 270/00 in (A-11). However,
we must temporarily retain it in order to solve for the constants a
Y, defined in (A=3).

0> Bo»

Second, we do not need s at all since it is merely a scale factor in
(A-11); and we do not need to know a and 8, separately, but only their

ratio. Also, a must all be positive since they are integrals

o° Bo» Yo
of positive functions.

Finally, the form of the optimum Ao(f) in (A-11) indicates that if
Ao(f) is zero, it is zero in the frequency regions where Rl(f) is minimum,
regardless of what Ryo(f) is. This is a very useful observation for
determining WO.

Now we substitute (A-11) in the individual terms of (A-3) to determine

the constants o Dropping the zero subscripts on «, 8, y for

o, Bo’ Yo'
notational convenience, we have

Q
1}
—
>
o
o)
—
|
[> 2 )]
<
&
N |
o
—
|
r\)IQ
™
~~
1}
QIN
2
/'._‘\
nN
|
NIQ
hoo)
—
f—
\/
-

where

R’l‘ f R’l‘(f)

-R—2-=w de . (A—13)
0

A-3
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Simplifying (A-12), we have the three simultaneous nonlinear equations

aZB Y(ZB 12 - a Il> 5

aBZ = Y<28 11 - a IO) 3

a282

1]

Y 482 12 - 4ag Il + a2 IO) . (A-14)

At first sight, solution of this set looks formidable indeed. However,
observe that the third equation is not independent of the first two; in fact,
28 times the first equation minus a times the second equation yields the third
equation. So we discard the third equation in (A-14)..

Next, eliminating the unwanted y from the first two equations in (A-14),
we obtain (restoring the zero subscripts on a, 8, y)

%o B
e IO = 3 E; Il + 2 12 =0 . (A-15)

which is an equation in exactly the one unknown we fundamentally need in
(A-11). The solutions are

5 1/2
B—= 2 I ° (A- 6)
0 0

Define square root

2 1/2
S = <; I1 -8 IO Ié> g (A-17)

In order that a real solution for ao/so exist, as required by definitions
(A-3), we must also have discriminant
D=912_-81,1,50 (A-18)
- 1 0 2= :
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Thus when we pick the region No in (A-13), it must be done with constraint
(A-18) in mind. If (A-18) is not satisfied, the corresponding choice of wo
is disallowed.

It should be observed that (A-18) is a very tight restriction on IO’
Il’ I5. For when we couple it with the Schwartz inequality (see (A-13))

2 2
12 _ B\ﬁ‘k < jL j‘ﬁ = 1.1
| R2 = R2 R2 0 "2

we have

8
3 I, 1

01l2< I

2
1<y Iy

In order to determine which of the two positive roots for ao/so is
the correct one to retain in (A-16), we must substitute it into Q0 and find
which yields a maximum. From (A-16) and (A-17),

“J>2 (3 I * %>2 1 @_ 2 ) (A-19)
o\ _ _ 812-81.1,%61,S) ., (A19
B 7T, Y 1 0 I2 1

0

and from the first equation of (A-14),

o N

-<|s2

0

Then from (A-3), (A-19), and (A-20),
I

2 4 _ 3
2—27 11+115> . (A-21)

This is obviously maximized by choosing the lower sign here and in (A-16). So
we have '

A-5
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a 31, ~=S
0 1
0 _ (A=22)
Bo 2 I0
and
1 2 2 .2 4 3
QO=-2-?<36101112—81012—2711+11$>
0

(A-23)

[}
r\J'
—
—
N
~
-
N
N
(e»)
—
N
]
—_
N
\/
+
-
(]

—_
N

o

+

—
—

o

NG

A1l the terms in (A-23) are obviously positive, the I0 12 - I% term following

from Schwartz's inequality under (A-18).

We can now drop irrelevant scale factors in (A-11) and state that

L o}
i B 31, -5

= R__(?)- Rl(f) ) e for f ¢ WO . (A—24)
2 | 4 IO

The quantities Iy, I1, I, and S needed in (A-22)-(A-24) are given by

(A-13) and (A-17). We must keep in mind that (A-24) can never be negative and
that (A-18) must be satisfied. The optimum filter power transfer function
follows from (A-1) as

‘Ho(f)lz , Ao(fb/GN(f) for f e . (A-25)

a

(0] N . . s
If 75; were known, we could easily determine wo by finding the

a

a
frequencies where Rl(f) =‘?9-, as noted earlier under (A-11); but 2%— itself
0 0

A-6
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a
. 0 .
1° 12. The way to determine T is

0

depends on wo through the quantities I I

0,

a
as follows. Hypothesize a value for ?9—; call it c. Determine wc from Rl(f)
)

by solving Rl(fc) = ¢, and then choosing wc as that region where
Rl(f) > c; there may be several values of fe- (There has been no need to
consider Ro(f) up to this point.) Compute

RY(F)
In = df ﬁETFT form=0,1, 2 , (A-26)

W

c
which depend on c. Compute D from (A-18); if D < 0, the hypothesized c value
is disallowed. Otherwise, compute S =\ﬁ?, and then a/8 from (A-22). Now we
will have the correct value of ¢ when we get back «/(28) = c; so we have the

identity
31, -5 31-<912-8112>1/2
¢ = 4110 - — 41(1) . (A-27)
or
21pc? -3 c+1,=0 . (A-28)

This Tast equation is identical to (A-15). Solution of (A-27) or (A-28)
(numerically or analytically) determines ao/(ZBO). Negative values for

Ao(f) are never encountered or contemplated via this approach. The only

check to make is that D is not negative; if it is, the corresponding selection
of ¢ is disallowed and must be modified.
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Example 1

We consider first the special case
R(F) = R(F),  Ry(F) = RA(F), (A-29)
where R(f) is a two-level function, i.e.,

rl for 0<f«<l

R(f) = : (A-30)
rs for 1< f<?

This example has equal bandwidths for each of the two frequency intervals,

namely (0, 1) and (1, 2), normalized to 1 Hz for convenience. Without loss of

generality, we let ry<r and define

r = -—2 H r>1 . (A_31)

r
Y‘l -

We now employ the procedure described in (A-26)-(A-28). First assume

c<ry . (A-32)

Then wc = (0, 2), and from (A-13), (A-29), (A-30), and (A-18),
2
1 = S'df R™E(E) = P2 e Dl gE e g2 (A-33)
0

where q = 1/rk. Then
I,=q+a2, I, =0y *+qy, I, = 2 S—(18 s -7’ (A-34)
g =M " s g =T Gge o= 5 = QW a9G-70-70 S

The identity (A-27) yields immediately

A-8
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1/2
3 dq + 3 9, - <18 9y 9, - 7 q% -7 qg 3 9 + 3 q, - S

- (i ) ) -

. a
for the value of ?g_’ provided only that the discriminant is non-negative.

Satisfaction of this requirement yields (in conjunction with (A-31))

l<rc« EL:LfH@Z

<r <= -2.0038 . (A-36)

Also we have to confirm that (A-32) is true; i. e.,

3gq, +3q ?
2~ 1
;s i = q— . (A—37)
4(“1 )

This can be manipulated into the form

7 2., [3 € o slp
¢z %) =22V - (A-38)

But since this is obviously always true, the only restriction, for this case
of assumption (A-32), is (A-36). That is, (A-32) is an allowable assumption
provided that (A-36) is satisfied.

We now consider the complementary case to (A-32); namely, we assume

cxr . (A-39)

Then, NC = (1, 2), and

gdf R™2(F) = rD" -2 (A-40)
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that is,

2 2
IO = 0y, I1 = 4y, 12 =1, D= 4, > 0, S = a . (A-41)

Identity (A-27) yields immediately

34, -4 r
C = 2 2 2 = 2(]i = 2—2 (A—42)
4 a, 2

for the value of ao/(ZBO). In order to satisfy (A-39), we must have

s
z->ry or r>2 . (A-43)

We now observe that conditions (A-36) and (A-43) cover all the possible
values of r in (1, +e); in fact, they overlap in the interval (2, 2.0938). In
order to determine whether to select (A-35) or (A-42) in this overlap interval

(and both are allowed), we must evaluate Q0 in this interval and take the
larger value.

We find that, from (A-23) and (A-34),

q, - w23t *3er(1 r _ 3r) () (8r -7 -7 )
\_ 2 (i % r2>

for condition (A-36); while from (A-23) and (A-41),

2.2 2‘>3/2

Qy = 5 (A-45)
for condition (A-43). We also find that QO/}S in (A-44) decreases
monotonically from the value 2 at r = 1, to the value 1 at

¥ = 2.06353 . (A-46)

A-10



Thus, for r < # , the maximum Q
the maximum Q, is given by (A-45). Q

. o A
discontinuous slope at r .
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is given by (A-44), while for r > r,

5 is continuous with r, but has a

As for the optimum A, function, we find, by use of (A-24) and (A-35),

that when 1 < r < 2.0938, with q = (18rjr, - 73 - 7)1/2,
2 4 Wl
driy *r; =30 r; ¥r;4
12 B for e (0, 1)
i r (rl + rz)
A (f) = (A-47)
r% +4 rg -3 rer,*ra
for f e (1, 2)
\~ 4 v, (rs+ r2
2\'1 2

Since the absolute scale of Ao(f) is not important, only the ratio of filter

gains is essential.

It is, after considerable manipulation,

1/2
 A=rF ( 18r - 7 - 7r2)

(When r = 2, this ratio is 3/2 via a limiting operation.)

2r (2 = 7) (A-48)

For r = 1, the

ratio in (A-48) is 1 as expected, since the function R(f) in (A-30) is flat

over (0, 2).

At the other extreme, where r is the largest allowable value for

this case (see (A-36)), the ratio of filter gains is

. 1+

62 _ 5 7836

for

AL () !

(
0
(
0
while at r = r

monotonically from 1 (at r = 1)

ratio is not +e at this upper limit for r in this case; i.e., A(l)(f)

= 2.06353, the ratio is 1.8440.

(A-49)

rs At AVE

Thus, ratio (A-48) increases
to the value in (A-49). Observe that this

p is not

zero at this value of r = (9 + 4472)/7.

A-11
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For the complementary case, (A-43), we use (A-24) and (A-42) to get

0 for f e (0, 1)

A,(F) = : (A-50)
1
~r for fe (1, 2)

2

This is the optimum filter function for r > r , while (A-47) is the optimum

for 1 <r < . Soatr=r . Aél)(f) Jjumps abruptly from a positive value to

Zero.

Example 2
Here we consider continuous functions of frequency

exp(-tf) for f >0

o)
—

. i

—

N
]

W= (0,++) , (A-51)

el
N

—

—

~
1}

exp(-atf) for f >0

where a is a dimensionless known constant; if a = 2, then Ro(f) =
R%(f), the original case of interest in (A-2).

We use the procedure described in (A-26)-(A-28). Let c=1.
Then W. = (0, f.), where f_ is the solution of

Ry(fe) = exp (-Tf ) = ¢c; Tf_ = -dn(c) . (A-52)
Then,
R?(f) fc exp[(a - n)'Cfc] -1
In = g; df R2 7Y = S df exp (-ntf + atf) = @ - T (A-53)
W 0
C

A-12
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The only case we will consider here is a = 2; then, using (A-52),

I, = % 12;2‘:2, I, = :lE 1 ; =N I,=f.=- %,Qn(c) . (A-54)
Identity (A-28) yields
- g* -3 (1 -c¢)-An(c) = ,
(c =1) (c =2) + 2@n(c) = s (A-55)

There are only two solutions of this equation; they are ¢ = 1 (disallowed) and

a
c = .316197 = '28—0 . (A—56)

Then (A-52) yields

ffc = 1.15139 _ , (A-57)

The value of Q0 is obtained by substituting (A-54) and (A-56) in
(A-23), yielding

TTQO = 373997 . (A-58)

The optimum filter follows upon use of (A-51), (A-54), and (A-56) in (A-24);
i.e.,

A (f) = ——— for O<u<l (A-59)

where

U = :— i (A=60)

A plot of (A-59) is given in figure A-1. The optimum Ao(f) goes to zero at
f = fc; it also lends heaviest emphasis to frequencies near .4fc, rather
than at zero where Ry(f) and R,(f) are largest.

A-13
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Figure A-1. Optimum Ay(f) of (A-59)
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APPENDIX B

SENSITIVITY ANALYSIS OF FILTER

It often happens that Gg and/or Gy are not completely known but must
be "guessed" or estimated. Furthermore H(f) usually cannot be realized

exactly. A1l of these factors influence performance and a derived optimum
filter may not be optimum in fact.

When R (the estimate of R) differs from the true R in a deterministic
manner, Q can be computed via (B-1). However, if R differs from R in a
probabilistic manner, then Q is a random variable and one can only compute the

expected performance.

From (A-1) and (A-3) in appendix A,

U [R] T

where R=6g/ay, A-= IHIZGN.

The subsequent analysis assumes that only GS must be estimated (i.e.,

GN is exactly known and H can be exactly implemented). The analysis can be
extended to the case of implementation errors in the filter and unknown GN.

We assume that G is estimated by breaking frequency region W into n
equilength subregions wi, 1 < i < n, where the power in each subregion is
measured. Thus, n must be chosen large enough so that GS and Gy remain
fairly constant within each subregion. The problem is then transformed into
the discrete domain. Namely, we can now rewrite (B-1) as

n - 4 .
= iy 4
— (B-2)

B-1
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where Q is a function of the random variables ﬁi’ l<i<n.

IA

Q can be expressed as a multidimensional Taylor series, i.e.,

~ n ~
Q(R) = Q(F) + 230/3R1l~ (R,R.)
i=1 B

1 n n ) . -
TS Q/aRiaRj’ (R, R (R, R

1ot

If (Ri‘ﬁi) is small, then E[Q] and Var[Q] may be approximated by
neglecting high order terms in the Taylor series.

Furthermore, if
E[Ri'Ri] =

Var[ﬁi] =

and all the {ﬁi} are independent, then

E[0] = Q(f +%Zao/aR} <,

120

n

Var[Q] = :Ei aQ/aR 2[ o? ‘

Voor

The chain rule can now be used to evaluate aQ/aRi and aZQ/aR§.
Making use of (B-2), we find that

3 2 4
) 1 4Aia ) ZA_i Ri a
;? i Y2

aQ/aRi

) ot
1200

B-2

(B-3)

(8-4)

(B-5)



TR No. 6999

s a1 e’ AR o]
BQ/aR]]’=—? 4A'I - 5
R 8 L Y
T ARG+ o
+ 2A — - 5 _ (B-6)
Y Y _R.
Rearranging (B-6), we obtain
aQ/aR.’ B Q(E)Em./a - 28,2 R./{‘ ,
R R
32Q/3R1.2‘_, - Q(?i)[le.z/m2 - 16A.3 R./(ay)
R i i i
+8n. Y R.2142 Z 20 2 /Y] ) ©(B-7)
A i R
Substituting (B-7) into (B-5), we obtain
c ~ 1 < 2,2
[Q] = QR)|1 + 5 21 (12A.%/a” - 16A,” R./(ay)
1=
+ 8A 4 R-Z/Y2 - 2A-2 Iv) o ﬂ >
i i ijg
o b 2 2 2
i= R
Example
Reconsider Ex. 1 from Appendix A with
E [GSl] =2
Var [GSl] = 0.04 ,
E [Gszj =2
Var [GSZ] = 0.12 , (B-9)
Gy = 10.
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Then,

Then,

and at

So Q

B-4

Rl = 0.2 Y
R§ -0.2 ,
o = 0.04/G§ = 0.0004

For this trivial example, by inspection let

from (B-2)

Aj=10
Ay =10

12

=4
=20 ,
8
0.08.

O <X ™ R
]

Substituting (B-10), (B-12), and (B-13) into (B-8)
E[Q] ~ 0.08 ,

Var [Q] # 0.000256,

Std dev [Q] = 0.016

lies most often in the region 0.08 = 0.016.

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)
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